
Fig 2. Left: Schematic of a 23-leg planar rf network antenna. (a) Top view; (b)
Side view showing the metal screen used to confine the plasma.
Right: Schematic of a 16-leg cylindrical (birdcage) rf antenna, showing the
points of rf feeding and grounding.
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Fig. 1: Left: 23-leg planar resonant network before it is embedded in a dielectric
and placed inside a vacuum chamber. Right: 16-leg cylindrical (birdcage)
resonant antenna. The vacuum vessel is a glass cylinder closed at top and
bottom by grounded metal plates.

These results show the proof of principle of a novel generic type of
plasma source which overcomes many of the physical and technical
limitations of conventional large-area capacitive and inductive plasma
sources. The general principle of resonant networks for plasma sources
opens up a rich field of study, and many new permutations of plasma
source physics could evolve from this concept.
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Resonant rf networks are new plasma sources with numerous potential
applications in plasma processing [1]. They consist of parallel
arrangements of L, C elementary meshes with resonant frequencies
corresponding to the normal modes for the current/voltage distributions.
At each resonant frequency, very high currents are generated in the
antenna structure, hence it can be used as an inductively-coupled
plasma source (ICP).

The planar antenna in Figs. 1, 2 is for large area surface treatment; the
cylindrical antenna is for volume plasma sources. The N parallel legs of
each antenna are made of copper tubes which act as inductive
elements L. High Q capacitors C link the legs together and present a
small inductance M.

Protoypes of Helyssen antennas operating at 13.56 MHz have been
tested up to 2 kW rf power and are currently under industrial pilot tests
for barrier layer coatings in packaging, silicon thin film deposition for
photovoltaic solar cells, and plasma sources for neutral beam heating.

Whistler-wave heated discharges using a planar antenna

Wave heated regimes are obtained with a static magnetic field
perpendicular to the source plane above a given threshold. The
measured propagating wave has the characteristics of whistler waves:
The transverse magnetic field in Fig. 4 has a helical structure due to an
elliptic polarization, with damped propagation away from the antenna.
The high efficiency of planar resonant rf networks for launching whistler-
wave heated discharges [4] means that plasma generation is not limited
to a small skin-depth region, in contrast to ICP sources.

Conclusions
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Fig. 4: Measured transverse field profile, ௫ܤ ݖ , ௬ܤ ݖ 	along the antenna axis for
quarters of a period. (a), (b) without magnetic field (inductive coupling); (c), (d)
with a 18 G static magnetic field.

Solving Kirchhoff's equations with the boundary conditions of the planar
structure gives m = [1,...,N-1] normal modes [2]. Each mode has a
specific current distribution (Fig. 3) and a resonance frequency
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Mutual impedances must be accounted for to reproduce the measured
frequencies. The antenna behaves as a R, L, C parallel resonance
circuit for each mode [2].

These plasmas show an E-H transition similar to ICP devices using
solenoids or spiral coils [3]. Resonant rf networks have a real
impedance near resonance which avoids strong voltages or currents in
the rf power feedline, regardless of network size.
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Fig. 3: Left: The mode frequencies of the planar antenna. The frequencies are
not strongly altered by power dissipation in the antenna.
Right: Current distribution in the planar antenna legs for mode m = 4.
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