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1. Introduction

For the design and operation of inductively-coupled plasma 

(ICP) sources, it is important to understand the coupling to the 

plasma because the plasma loading affects the primary circuit 

impedance, and therefore the impedance matching and the 

power transfer ef�ciency [2]. A model to calculate the source-

plasma mutual inductance is useful to optimize ICP source 

design and for interpretation of experimental measurements.

For simple geometries such as a coil or a solenoid, the self-

inductance of an ICP source primary circuit can be calculated 

using standard formulae [2, 3]. The plasma self-inductance and 

the source-plasma mutual inductance can also be estimated 

by making reasonable assumptions about the plasma current 

geometry. In this way, the electrical properties of an inductive 

low pressure RF plasma can be analysed by considering the 

plasma to be a one-turn secondary of an air-core transformer 

[3]. This transformer model [2] is therefore convenient when 

formulae for the closed current circuit loop inductances are 

known, for example, for coils and solenoids. However, the 

transformer model approach is problematic in other cases, 

such as planar RF antennas [4], where the loop inductances of 

the source and plasma are impractical or impossible to deter-

mine using transformer models.

This paper (part I) introduces a complementary approach to 

calculate the inductive coupling for the case of planar sources 

and plasmas, based on the complex image method. This 

method gives an intuitive formula for the mutual inductance 
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between a source current in a straight wire segment and the 

mirror image current that it induces in a resistive plasma. 

Arbitrary con�gurations of planar ICP sources can then be 

considered by means of a partial inductance description  

[5, 6], whereby a model for the source circuit is �rst broken 

down into contiguous linear elements. The source-plasma 

mutual inductance is �nally calculated from the impedance 

matrix of all the source elements, including their complex 

image currents in the plasma. Plasma experiments can be 

interpreted, and future innovative designs could be evaluated, 

using the understanding gained in this way.

Here in part I, we will concentrate on a single linear current 

segment above a resistive plasma slab. For a point of com-

parison with plasma loading, the coupling of a straight wire 

with the induced current in an ideal screen is �rst recalled 

in section 2 using the well-known method of images [7, 8]. 

The complex image method is then introduced in section  3 

to calculate the partial mutual inductance between a wire and 

the current induced in a resistive plasma slab. Section 4 �nally 

compares the complex image partial inductance approach with 

the transformer model. The main result is an expression for 

the complex mutual partial inductance between a linear cur-

rent source and a resistive plasma slab. This result is exploited 

in the second paper (part II [1]) to calculate the impedance 

matrix of a complete network, and to compare theory with 

plasma experiments using a planar resonant network plasma 

source.

2. Mutual inductance for a straight wire above 

an ideal screen

As a preliminary step towards a linear current segment above 

an in�nite plasma half-space, we �rst consider a straight  

wire distance h above an in�nite, perfectly-conducting ground 

plane as shown in �gure 1. According to the method of images, 

the magnetic �eld above the screen, produced by the induced 

current pro�le in the screen, is identical to the �eld produced 

by an image of the source current re!ected in the screen  

[6, 9]. The image current is in the opposite direction, parallel 

and at an equal distance h below the screen. For a length of wire 

which is part of a closed circuit, the mutual inductance between 

the source current in the wire and the induced current in the 

ideal screen can be calculated using partial inductances [5, 6]. 

Since the concept of partial inductance is used here as a tool not 

commonly used in the plasma literature, the reader is referred to 

a brief summary of some relevant results in appendix A.

For a straight wire of length l, height h above a perfectly-

conducting screen, from (A.6) the mutual partial inductance is

µ

π
≈ −

⎛

⎝
⎜

⎡

⎣⎢
⎤

⎦⎥
⎞

⎠
⎟M l

l

h2
ln 1 ,p

wire/screen 0
 (1)

where the approximation is good for ≫l h.

The method of images for an ideal screen serves as a reference 

point for the complex image method in section 3. The concepts 

of partial inductance will be recalled in section 4 to describe the 

transformer equivalent circuits for a linear current above an ideal 

ground screen, and for a linear current above a plasma.

3. The complex image method applied to resistive 

plasma

The problem to be solved in this paper is the inductive coupling 

between a RF current-carrying wire and the current it induces 

in a resistive plasma. Historically, this problem is analogous to 

the fundamental studies of resistive-ground return parameters 

of transmission lines which were motivated by the telecom-

munications and power industries. Carson [10] developed the 

most widely accepted approach, where the electromagnetic 

�eld due to a line current source above a �nitely conducting 

half-space was expressed as due to the superposition of two 

sources: the �lament current itself, and the induced current 

!owing in the resistive medium. The results were given in 

terms of in�nite converging Fourier integrals.

It has since been shown [11–20] that the magnetic �eld 

above the plane surface of a resistive medium, due to its spa-

tially-distributed induced current, using a two-dimensional 

quasi-static approximation [18–20] (where displacement cur-

rents are neglected), is mathematically equivalent to a real 

image current �lament located at a complex depth in the resis-

tive medium below the line current source; hence the name 

complex image method. It should be understood that the con-

cept of a complex depth is not a physical hypothesis, but a 

computational convenience [16, 21].

The effective mirroring plane is at a complex distance 

p below the medium surface, where p is the complex skin 

depth for plane waves, =
ω−H H e ez tp j

0
/ . This expression for 

damped propagating waves is more commonly written as 
( )

=
δ ω− −H H e ez t kzj

0
/ , where the (real) skin depth δ is the 1/e 

distance for �eld amplitude decay, and k is the wavenumber. 

The complex skin depth p is related to δ by [14, 15]

Figure 1. (a) Perspective view of a linear current source element 
length l, at a distance h above an in�nite, perfectly-conducting 
ground plane. The pro�le of the induced surface current on the 
plane is shown schematically. The integral of the current per unit 
width, i(x), along x is equal and opposite to the source current I.  
(b) The same source current, with its equal and opposite image 
current at distance 2h below it, to illustrate the method of images.
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where ω π= f2  with f the alternating current frequency, µ0 

the vacuum permeability, σ the electrical conductivity, and 

( )= Ik p1/ . In a conventional resistive medium where the 

conductivity is purely real, the skin depth ( )δ π µ σ=
−f 0
1/2 and 

( ) δ= +p j1/ 1 / .

The distance from source to mirror plane is ( )+h p , and 

therefore the image current is a distance ( )+h p2  from the 

source [11–20] as shown in �gure  2. The spatial distribu-

tion of the current penetration into the skin depth is also 

represented in the �gure using a two-dimensional numerical 

simulation [22] of the electromagnetic �elds. Comparison of 

�gure 2 with �gure 1 shows that the source-image distance for 

a resistive medium is ( )+h p2  instead of 2h for a perfectly-

conducting screen.

The complex image method has previously been success-

fully applied to the �elds of telecommunications and power 

transmission [11–16], geophysics [17, 21, 23], and the micro-

electronics industry [18–20] to obtain solutions for the skin 

depth effect on inductive coupling in various resistive media. A 

few papers combine the complex image method with the par-

tial inductance approach; some examples are to be found in the 

�eld of microelectronics [18–20]. However, to our knowledge, 

the complex image method for mutual inductance calculations 

has not been applied to the �eld of plasma physics before.

Previous works in complex image theory all consider 

the resistive medium to have a purely real conductivity, σ. 

However, electron inertia in a plasma means that the plasma 

conductivity is complex [2]:

σ

σ

ω ν

σ

ν

=
+

=
n q

mj1 /
, where ,pl

dc

m
dc

e e
2

e m

 (3)

and qe, me and ne are respectively the electron charge, mass 

and number density, νm the electron-neutral collision fre-

quency, and σdc the dc conductivity in the limit ω ν≪ m. Since 

the derivation of the complex image theory involves integra-

tion in the complex plane [11, 14], it was veri�ed here that the 

results remain valid when the complex plasma conductivity 

σpl is substituted for σ in the expression (2) for the complex 

skin depth p.

The current image picture can now be used to derive simple 

formulae for inductances [14, 20] by replacing h in section 2 

for the ideal screen, by ( )+h p . For example, the mutual par-

tial inductance between the wire and its image in the plasma, 

using (1), is

( )

µ

π
≈

+
−

⎛

⎝
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⎡

⎣
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⎤

⎦
⎥

⎞

⎠
⎟l

l

h
M

p2
ln 1 .p

wire/plasma 0
 (4)

Note that h here and in �gure 2 is the distance between the 

wire and the plasma/sheath boundary.

3.1. Assumptions, error evaluation and range of validity

In order to apply the complex image method, the plasma is 

assumed to be laterally uniform over the length l of the exci-

tation current element. The plasma is also considered to be 

uniform in depth, for at least a few skin depths from the source 

conductor where the induced currents are non-negligible, 

although averaged homogeneous plasma properties can be 

supposed [14]. If necessary, the complex image method can 

be extended to treat multiple layers with different properties 

[14, 19]. The complex image methods above also assume that 

the plasma �lls an in�nite half-space, or at least a depth much 

greater than the plasma skin depth, so that the integrated cur-

rent pro�le induced in the plasma is equal and opposite to the 

source excitation current. Otherwise, for a thin plasma slab or 

for low plasma density, where the skin depth becomes com-

parable to, or longer than, the plasma thickness, the complex 

image method can be adapted using appropriate boundary 

conditions for the magnetic �eld at the far side of the plasma 

[18, 20].

Déri et al [14] have compared the exact in�nite series 

results of Carson [10] with the complex image expressions 

throughout the whole frequency range. It was found that the 

complex image method is accurate for the limits of large and 

small values of δh/ , with the largest errors no greater than 

10% over an intermediate range δ< <
− h10 / 102 0. Finally, all 

transverse dimensions are assumed small compared with the 

free space wavelength so that a lumped circuit, quasi-static 

Figure 2. (a) Perspective view of a linear current source element 
length l, parallel to and at distance h from the surface of a plasma of 
complex skin depth p. The surface and depth pro�les of the induced 
current in the plasma are shown schematically. The integral of the 
current density j(x, z) is equal and opposite to the source current 
I. (b) To illustrate the complex image method, the effective mirror 
surface is at a complex skin depth distance p below the plasma 
surface. Hence the equal and opposite image current is at a complex 
distance ( )+h p2  from the current source.
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approximation is valid, and capacitively-coupled displacement 

currents can be neglected compared to inductively-coupled 

conduction currents. It should be noted that the quasi-static 

approximation implies that the complex image model is only 

valid for RF frequencies much less than the electron plasma 

frequency (ω ω≪ pe), because otherwise the displacement cur-

rent becomes signi�cant [2]. The complex image method is 

therefore only applicable when the plasma can be described as 

a resistive conductor rather than as a dielectric medium.

The complex image method therefore gives a good approx-

imation for the magnetic �eld above a planar plasma using 

a quasi-static approximation of Maxwell’s equations  which 

accounts for the effect of induced currents. However, to the 

authors’ knowledge, it is not known whether the complex 

image method can be adapted to cylindrical geometry, such 

as for a solenoid or coil surrounding a plasma column. Such a 

study is beyond the scope of this paper.

4. Comparison of the transformer model and the 

complex image method applied to inductively- 

coupled plasma

The aim of this section  is to investigate the equivalence 

between the transformer model, as commonly used for induc-

tively-coupled plasma sources [2, 3, 24], and the partial induc-

tance treatment of a wire current coupled to a plasma using 

the complex image method. The partial inductance concept 

is necessary to separate the total (loop) inductance of a wire/

plasma system into primary and secondary transformer cir-

cuits coupled by a mutual inductance. The wire/screen system 

will again be considered �rst to provide a point of comparison 

for the wire/plasma system.

4.1. Excitation current in a wire and induced currents in an 

ideal screen

In �gure 3(a), the self partial inductance Lp11
wire of the wire and 

its resistance R1 represent the primary circuit, carrying cur-

rent I1, of an equivalent transformer. The self-inductance of 

the ideal screen, Lp22
screen, represents the secondary circuit car-

rying the induced current I2. Finally, the mutual partial induc-

tance Mp12
wire/screen, from (1), represents the mutual inductance 

between the primary and secondary circuits. The voltage 

across the primary circuit is therefore

ω ω= + −V R I L I M Ij j .1 1 1 p11
wire

1 p12
wire/screen

2 (5)

For the transformer model, the usual next step is to substi-

tute for the current I2 in terms of I1 and the estimated imped-

ances in the secondary circuit [2, 3], as resumed in appendix 

B. However, in the terminology of ‘go-and-return circuits’ 

(�gure A1) and ‘mirror image’ methods (�gures 1 and 2), it 

is implicit that the induced current in the secondary circuit 

here is equal and opposite to the primary circuit source cur-

rent. Hence =I I1 2 in �gure 3 and (5), respecting the opposite 

directions of the currents.

The impedance V I/1 1 of the transformed, or coupled, pri-

mary circuit in �gure  3(b) can therefore be found directly 

from (5) as

( )ω= + −R L MZ j .1
wire/screen

1 p11
wire

p12
wire/screen

 (6)

The re!ected impedance of the secondary circuit transformed 

into the primary circuit is therefore equal to the mutual imped-

ance, because the currents in the primary and secondary cir-

cuits are equal; this is a consequence of the image description.

4.2. Excitation current in a wire and induced currents in a 

resistive plasma

By analogy with section 4.1, the impedance of the primary, 

transformed by inductive coupling to the plasma, is

( )ω= + −R LZ j M ,1
wire/plasma

1 p11
wire

p12
wire/plasma

 (7)

where the only difference is that the mutual inductance, from 

(4), is now complex. This wire-to-plasma mutual inductance 

Mp12
wire/plasma represents the effect of plasma coupling on the pri-

mary circuit impedance; it is the principal result of this paper, 

which will be exploited to interpret experimental measure-

ments of a resonant network ICP source in part II [1].

Writing ( )+h p  as ( )ϕ| + |h p jexp , the complex mutual 

inductance in (4) can further be expressed as

µ

π

µ

π
ϕ≈

| + |
− −

⎛

⎝
⎜⎜

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠
⎟⎟l

l

h
lM

p
j

2
ln 1

2
,p12

wire/plasma 0 0
 (8)

where ϕ is the (negative) argument of ( )+h p  as shown in 

�gure 5. From (7), the complex mutual impedance in the pri-

mary circuit due to plasma coupling, ω−j Mp12
wire/plasma, there-

fore represents a reduction in real inductance

µ

π
− ≈−

| + |
−

⎛

⎝
⎜⎜

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠
⎟⎟M l

l

h p2
ln 1 ,p12

wire/plasma 0
 (9)

and an increase in resistance

Figure 3. (a) The wire as a primary circuit, and the ideal screen as 
a secondary circuit, coupled by their mutual inductance. The image 
current in the screen, I2, is equal and opposite to the wire current, 
I1. (b) The equivalent circuit of the wire, transformed by coupling to 
the ideal screen.
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ωµ

π
ϕ≈ | |R l

2
,2

wire/plasma 0
 (10)

in the primary circuit as shown in �gure 4(b).

For the linear current element considered in this paper  

(part I), the complex image theory therefore gives an expres-

sion (9) for the reduction in ICP source inductance due to 

currents induced in the plasma, and an expression (10) for 

the increase in ICP source resistance due to power dissipa-

tion coupled into the plasma. Each term depends only on the 

geometry (length l, and dielectric thickness plus sheath width, 

h), and the plasma complex skin depth p. The latter is a func-

tion of electron density and collision frequency, and the RF 

excitation frequency. Hence the only plasma parameters nec-

essary to completely determine the inductive plasma coupling 

are ne, νm, and the effective sheath width. As well as the intui-

tive picture of image currents for calculating inductances, the 

complex image method therefore also offers the possibility of 

a parametric study of plasma coupling to the source, via the 

simple dependence on plasma complex skin depth p.

4.3. Effect of plasma collisionality

 (i) For a fully collisional plasma, ν ω≫m , the plasma con-

ductivity is purely real in (3), as for the conventional 

resistive medium considered in (2). Hence α π= − /4 in 

�gure 5 and π ϕ− < </4 0 in (10). The oscillating mag-

netic �eld is strongly damped as its power is dissipated in 

the plasma, with collisional skin depth ( )δ π µ σ=
−fc 0 dc
1/2. 

The ICP source inductance is diminished (9) and its resist-

ance increases (10) due to the inductive plasma coupling.

 (ii) For a collisionless plasma, ν ω≪m , the plasma con-

ductivity is purely imaginary in (3). Hence p is purely 

real and the magnetic �eld is evanescent in the plasma 

with collisionless skin depth δ ω= c/p pe, where c is the 

speed of light in vacuum. The ICP source inductance is 

still reduced according to (9), but there is no power dis-

sipation in the plasma, hence the ICP source resistance 

is unchanged by the plasma coupling ( =R 02
wire/plasma  in 

(10) since α ϕ= = 0 in �gure  5). However, the effect 

of stochastic collisions, collisionless heating, and anoma-

lous skin depth could be accounted for by an effective 

collision frequency [2, 25].

  Note that the frequency range of validity is limited by 

ω ω≪ pe because the complex image model assumes that 

the displacement current is negligible compare to induced 

conduction current, as mentioned in section 3.1.

 (iii) For intermediate collisionality, ω ν∼ m, the changes to 

the ICP source impedance due to plasma coupling can be 

calculated using (9) and (10).

5. Conclusions

A general method for calculating the inductive coupling to 

a plasma slab is presented. Firstly, the inductively-coupled 

plasma source is described using the partial inductance con-

cept, where a model for the primary circuit is broken down 

into linear contiguous elements. Secondly, the complex image 

method gives the plasma inductive coupling in terms of the 

complex mutual partial inductance between the plasma and a 

linear element. To our knowledge, the complex image method 

has not previously been applied to plasma physics in this con-

text. Simple expressions are given for the change in inductance 

and resistance of the ICP source due to plasma loading. The 

plasma coupling is determined by the plasma complex skin 

depth, and the distance between the source element and the 

plasma. The complex image method, combined with the par-

tial inductance approach, can be used to estimate the plasma 

loading for planar plasma source geometries.

These results are used in a second paper, part II [1], to 

calculate the impedance matrix of a complete inductively-

coupled source, and to compare the theory with plasma exper-

iments using a planar resonant network antenna.
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Figure 4. (a) The wire as a primary circuit, and the plasma as a 
secondary circuit, coupled by their complex mutual inductance. 
The image current in the plasma is equal and opposite to the wire 
current. (b) The equivalent circuit of the wire, transformed by 
coupling to the plasma, which reduces the net inductance (9) and 
increases its resistance (10).
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Appendix A. Partial inductance

A brief description of partial inductances is presented here as 

a necessary step to de�ne and calculate the self partial induc-

tance and mutual partial inductance between parallel current 

�laments. These results also apply directly to plasma coupling 

calculations for an antenna network made up of orthogonal 

straight sections  in part II [1]. A full account of the partial 

inductance concept is given by Ruehli [5], and the recent book 

by Paul [6] is dedicated to loop and partial inductances.

There are two fundamental approaches to inductance cal-

culations: the most common approach is to calculate the loop 

inductance from the magnetic !ux linking a closed current 

circuit [6]. This is convenient when the circuit geometry is 

suf�ciently simple and well-de�ned for the magnetic !ux to 

be calculated, such as for a coil or a solenoid. However, when 

the current path is dif�cult to de�ne, or when various parts of 

the circuit are coupled to different current circuits, it is not 

possible to calculate a unique loop inductance.

Alternatively, the partial inductances [6] of all the con-

tiguous partial elements of a closed circuit can be calculated 

and combined in an impedance matrix, which includes all 

the mutual inductances, to give the complete circuit induct-

ance. These two different methods date from the origins of 

electromagnetic theory (for a review see [26]) up to modern 

works [6].

A.1. Partial inductances for straight wire segments

The self partial inductance of one linear element of a cur-

rent circuit is de�ned as the magnetic !ux ψp, per unit current, 

between the current segment and in�nity,

∫ ∫ψ =
=

∞

=−
B z rd d ,

r a z l

l

p
/2

/2

 (A.1)

where the magnetic �eld B, using the Biot-Savart law, is  

[6, 27],

∫µ

π

θ
=

=−
B

I

R
z

4

sin
d ,

z l

l
0

/2

/2

2
 (A.2)

and I is the current in the wire. By integration, the self partial 

inductance of a straight cylindrical wire of radius a and length 

l is approximately [6, 27, 28]

µ

π
≈ −

⎛

⎝
⎜

⎡

⎣⎢
⎤

⎦⎥
⎞

⎠
⎟L l

l

a2
ln

2
1 ,p

wire 0
 (A.3)

where the approximation is good for ≫l a. This is implicitly 

the external self partial inductance because current !ows only 

in the surface of the wire due to the skin effect in metals at 

radio frequencies; there is therefore no internal magnetic !ux 

in the wire.

The mutual partial inductance, Mp, between two seg-

ments is the magnetic !ux, due to unit current in the "rst 

segment, between the second segment and in"nity [6]. For 

wires of length l, separation 2h, it is obtained by replacing 

the wire radius a in (A.3) by the new effective radius 2h to  

obtain [6, 27, 28]

µ

π
≈ −

⎛

⎝
⎜

⎡

⎣⎢
⎤

⎦⎥
⎞

⎠
⎟M l

l

h2
ln 1 ,p

wire/wire 0
 (A.4)

where the approximation is good for ≫ ≫l h a. This approxi-

mation will be appropriate here for comparison with the loop 

inductance, although more exact expressions will be used in 

the following paper, part II [1]. Formal proofs of partial induc-

tances for arbitrary orientations of current segments are given 

in references [5] and [6], but the simplest case of parallel cur-

rent "laments is suf"cient to calculate the total inductance of 

an antenna network made up of straight wires in part II [1].

Figure A1 shows a two-wire transmission line for a go-and-

return current circuit made up of two of these wires. The net 

partial inductance [6] (alternatively called the effective par-

tial inductance or simply the partial inductance) of wire 1 

is de"ned as = −L L M1 p11
wire

p12
wire/wire, and similarly for wire 2. 

The total, or loop, inductance of this section of transmission 

line is obtained by summing the !ux contributions of all the 

partial inductances:

µ

π
= + − ≈

⎡

⎣⎢
⎤

⎦⎥
L L L M l

h

a
2 ln

2
,loop

wire/wire
p11
wire

p22
wire

p12
wire/wire 0

 (A.5)

where the mutual inductance contributions are subtracted 

because the currents are in opposite directions [6, 27, 28]. The 

partial inductance method therefore gives the same result as 

in standard textbooks for the loop inductance of a two-wire 

transmission line of length l, separation distance 2h, when 

proximity and end effects are neglected.

A.2. Partial inductances for a straight wire segment above  

an ideal screen

According to the well-known method of images [7, 8], the 

"eld produced by the current pro"le induced on the screen 

is identical to the "eld produced by the image of the original 

current re!ected in the screen [6, 9]. The image current is 

therefore parallel and opposite at an equal distance h below 

the screen.

Figure A1. Model of a two-wire return circuit of parallel 
conductors in terms of partial inductances [6].

Mp12

l 

I 

2h 

wire 1

wire 2I 

Lp11

Lp22

I 

I 

wire

wire

wire/wire
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Because the magnetic "eld above the plane remains the 

same as for the two-wire system, the results of the two-wire 

transmission line can be directly applied. The self partial 

inductance Lp11
wire of the wire is therefore the same as (A.3), and 

the mutual partial inductance of the wire and the screen is also 

unchanged with regard to (A.4):

µ

π
≈ −

⎛

⎝
⎜

⎡

⎣⎢
⎤

⎦⎥
⎞

⎠
⎟M l

l

h2
ln 1 .p

wire/screen 0
 (A.6)

However, the magnetic "eld exists only in the upper half-

space and so the loop inductance is one half of the two-wire 

system in (A.5):

µ

π
≈

⎡

⎣⎢
⎤

⎦⎥
L l

h

a2
ln

2
,loop

wire/screen 0
 (A.7)

which, again, is the same result as in standard textbooks for 

the inductance of a wire-to-plane transmission line of length l, 

when proximity and end effects are neglected [6].

The net partial inductance of the wire,  L L M1 p11
wire

p12
wire/image

= − , 

is now equal to the total (loop) inductance, which implies that 

the net partial inductance of the idealized ground plane is 

zero [29]. This is self-consistent with the concept of a per-

fect magnetic screen, because the magnetic !ux due to the 

current induced in the screen self partial inductance exactly 

cancels the !ux associated with the mutual partial inductance 

due to the current in the wire. We also note that expressions 

for the net partial inductance of a "nite screen tend to zero 

as the plane width tends to in"nity [29, 30]. Furthermore, a 

zero net partial inductance also means that the voltage drop 

along a perfect ground plane is zero (no "elds beyond a per-

fect screen).

Appendix B. Brief summary of the transformer 

method

In "gure B1, the ICP source is a primary circuit with current 

I1, voltage V1, resistance R1 and loop self-inductance L11. The 

plasma current I2 is effectively a single-turn air-cored sec-

ondary circuit with loop self-inductance L22 determined by 

the geometry of the plasma current path. This current path 

has plasma impedance ( )ω ν= +RZ j1 / mpl 2 , where R2 is the 

plasma current path resistance, and ω νRj / m2  is the inductance 

due to electron inertia which follows from the plasma com-

plex conductivity in (3) [2, 3]. The mutual loop inductance 

between the primary and secondary loop inductances is M12. 

Applying Kirchoff’s law to the primary and secondary circuits 

gives

ω ω= + −V R I L I M Ij j ,1 1 1 11 1 12 2 (B.1)

ω ω= + −I L I M IZ j j0 .pl 2 22 2 12 1 (B.2)

Substituting for I2 from (B.2) in (B.1) gives the primary 

impedance = V IZ /1 1 1 as follows:

( )
ω

ω

ω

= + +
+

R L
M

L
Z j

Z j
,1 1 11

2
12
2

pl 22

 (B.3)

where ( )ω+ LZ jpl 22  is the secondary circuit impedance. In 

"gure  B1, the secondary circuit impedance has been trans-

formed into its series equivalent impedance in terms of the 

primary circuit current.
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