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Abstract
The analysis of a radio-frequency (RF) planar antenna is presented for applications in plasma
processing. The antenna is a network of elementary meshes composed of inductive and
capacitive elements which exhibits a set of resonant modes. The high currents generated by
RF power feeding under resonance are efficient for plasma generation. A general solution is
derived for the currents in the driven dissipative network for these conditions. The dominantly
real input impedance near antenna resonance avoids the high reactive currents and voltages in
the matching box and RF power connections which can be a problem with conventional
large-area capacitively and inductively coupled plasma sources. The driven antenna can be
approximated by a parallel resonance equivalent circuit whose input impedance can
conveniently be measured to interpret the dissipation due to the plasma.

1. Introduction

Plasmas are used for various applications such as solar cell
production, semiconductor manufacturing, food packaging
and space propulsion, to name just a few. There is a constant
need to improve plasma sources in order to increase the process
rates and to develop new types of products. One aspect of
source performance is the requirement of high electron density,
since a dense plasma generally leads to high dissociation rates
and an efficient use of the process precursors. A second
important aspect lies in the possibility of large-area plasma
processing. This has a double interest as it would allow larger
amounts of small pieces to be treated in a single run as well as
larger work-pieces to be processed.

Radio-frequency (RF) driven discharges are commonly
used for high density plasma sources [1]. Considerable
difficulties are often met in the generation of very large-
area plasma with regard to the RF power injection, because
conventional RF sources present almost purely reactive
input impedance which tends either towards zero (capacitive
discharges) or towards infinity (inductive discharges) with
increasing area. The impedance matching between the RF
generator and the source then drives very high currents and/or
voltages in the matching network and power feed lines.

These limitations could be overcome using RF network
antennas (Helyssen sources) whose essential characteristic
is that they are resonant devices. When excited at one of
its resonance frequencies the antenna develops very high
currents within its structure, which can be used for inductively
coupled plasma sources [2–4]. These resonating current
distributions are called the normal modes of the antenna and are
characterized by their sinusoidal distribution [5]. In addition
to the fact that the high current distributions generated at
resonance are very efficient in terms of plasma generation, a
major advantage of these antennas lies in their input impedance
properties which could allow very large-area plasma sources to
be developed. In its cylindrical version (closed configuration),
the Helyssen antenna was shown to be well-adapted for plasma
generation by helicon wave excitation in the presence of a static
magnetic field [6].

A planar version of a resonant antenna was recently
constructed and showed good performance in terms of plasma
uniformity and high electron density [2–4]. Measurements of
the antenna impedance [2] showed that it behaved as a parallel
resonance circuit in the neighborhood of a resonant mode. A
dissipative network model is developed here to interpret those
measurements in terms of the effect of plasma coupling on
the antenna component values. This model also provides a
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Figure 1. High-pass dissipative ladder network made up of identical
meshes, showing the leg inductances L with resistances R, linked by
capacitances C with short connections of inductance M and
resistance r .

basic theoretical framework to optimize the antenna design
with regard to current uniformity and input impedance, in
order to further develop the resonant network for plasma source
applications. Experimental measurements of the influence of
the mode structure on plasma uniformity [7] will be discussed
in future work.

The first part of this study describes the normal modes of
the antenna, the second part gives a general solution for the
currents of driven dissipative antennas, and in the third part,
a parallel resonance equivalent circuit is derived in terms of
the antenna components and their modifications due to plasma
coupling.

2. Resonant planar network as an inductively
coupled plasma source

This work describes the principles of the Helyssen planar
antenna [8]. Its structure and operating principles are
similar to the closed cylindrical birdcage antenna previously
described [5, 6], but it is unwrapped to form an open and
planar structure, as shown in figure 1. The planar structure
is a segment of a ladder network which can also be called an
open coil (or antenna) in the literature [5]. The planar antenna
is suited for surface treatment of large flat areas, whereas the
cylindrical version can be used as a volume plasma source for
immersion of work-pieces [7]. Even though their applications
are different, the circuit analysis of open and closed antennas is
only distinguished by the boundary conditions inherent to their
structure [5]. The closed antenna (birdcage) is well known for
nuclear magnetic resonance (NMR) measurements where the
m = 1 mode is used to generate a uniform RF magnetic field
to excite the nuclear spins in biological samples [5]. Driven
birdcage resonators with losses were recently considered by
Novikov [9] using low impedance voltage sources applied to
single mesh elements. Pascone et al [10] and Tropp [11] treated
the birdcage resonator as a lossy transmission line. Other
authors [12, 13] represented the dissipation as an effective coil
resistance. In this paper, we consider the general case of a
dissipative planar resonant antenna, with arbitrary positions
for the RF connections along one side, applied as a plasma
source.

Throughout this work, a discrete component (lumped
element) equivalent circuit analysis will be used. This is
valid provided that all circuit dimensions are small compared
with the wavelength of the RF excitation. Electromagnetic

effects due to large dimensions and high frequencies will be
considered in later work.

The balanced high-pass passive filter ladder network
shown in figure 1 has shunt inductors and series capacitors.
The inductors consist of conducting legs (rungs), regularly
distributed, with each one connected at both ends to its closest
neighbors by capacitors. In the RF range (1–100 MHz), the
legs can be approximated by self-inductances L having a small
resistance R. The high-quality-factor capacitors C in the two
side-branches (the stringers) have metal leads to link the rungs
together, having self-inductance M and resistance r . To a first
order approximation for a dissipative antenna, therefore, the
stringer impedances are Z1 = 1/(jωC) + jωM + r , and the leg
impedances are Z2 = R + jωL, where ω is the RF angular
frequency. The mutual inductance between all conducting
parts has a strong influence on the mode frequencies [5], but its
calculation is beyond the scope of this work. On the other hand,
the mode structure of the currents and voltages calculated here
is not strongly perturbed by the mutual inductance effect [2].
The general formulation given in this work can be applied to
any configuration provided that the network is made up of
identical elementary meshes. We consider high-pass networks
as a specific example for plasma applications, although other
resonant antenna configurations can also be envisaged (low-
pass, hybrid, etc).

Experiments on rf network antennas for large-area and
large-volume inductively coupled plasma sources have been
described in [7] where it was shown that further understanding
of the antenna–plasma coupling requires an analysis of the
dissipative network antenna. As an example, the data points
in figure 2(a) show the impedance of a planar 23-leg antenna
measured without plasma [2]. The fitted line demonstrates
that the network of figure 1 can be well represented by a
parallel resonance equivalent circuit. In the presence of a low
pressure gas, capacitive coupling from the high-voltage points
on the antenna ignites a plasma; the antenna input impedance
does not change significantly because the capacitance between
the antenna and plasma is small compared with the antenna
capacitances C [7]. As the antenna input power is raised,
currents induced in the plasma then cause a transition to an
inductively coupled plasma [7, 14–18]. The input impedance
of the antenna changes strongly as shown by the example in
figure 2(b). This change is due to plasma–antenna coupling
by transformer action as described by Piejak et al [14].

In this case, each leg in figure 1 can be considered to
be a primary circuit (self-inductance L0, resistance R0, in
figure 3) which induces a skin current in the plasma. This
induced current can be considered as a secondary circuit having
a geometric (or magnetic) self-inductance L2 and a plasma
impedance [14]. The plasma impedance is proportional to the
plasma complex (vector) resistivity ρ = (ν + jω)me/(nee

2),
where me and ne are the electron mass and number density and
ν is the effective electron collision frequency due to collisions
with the neutral gas [1]. Hence, if the resistance of the plasma
current path in the secondary circuit has a value R2, then the
reactance of this plasma current path is jωR2/ν, with respect to
the ratio of the real and imaginary parts of the plasma resistivity.
This plasma reactance can be written as an effective plasma

2



Plasma Sources Sci. Technol. 23 (2014) 015006 Ph Guittienne et al

Figure 2. The antenna impedance magnitude (squares) and phase
(circles) measured in the neighborhood of the m = 6 mode (a)
without plasma; and (b) with a low power plasma (80 W) in 5 Pa of
argon. The lines show fitted curves using a parallel resonance
equivalent circuit for each case: (a) 13.13 nF in parallel with a series
combination of 10.55 nH and 2.65 m�; (b) 15.09 nF in parallel with
a series combination of 9.166 nH and 6.68 m�. The dotted lines
show the shift in the resonance frequency from 13.525 MHz
(without plasma) to 13.532 MHz for the low power plasma. Data
taken from [2].

inductance Le = R2/ν, as shown schematically in figure 3,
which is physically due to electron inertia [14].

The induced current can be approximated as an image
current in a perfectly conducting plane at some arbitrary
position in the plasma, such as at half the skin depth from the
antenna–plasma interface [19]. Values for L0, L2, and their
mutual inductance M02 can be calculated using expressions
for the inductance of linear conductors and the image current
method [20]. The impedance of each leg in the presence of
plasma inductive coupling is given by the series equivalent
circuit in figure 3 where the secondary (plasma) circuit is
transformed in terms of the primary circuit current [14, 21].
Finally, the leg impedance Z2 = R + jωL in figure 1 is
represented by R0 + jωL0 in the absence of plasma, and
(R0 + aR2) + jω(L0 − aL2 − aR2/ν) in the presence of
plasma inductive coupling [14], where a = ω2M2

02/[(ωL2 +

leg,
primary
circuit

L0

R0

ip

L2

R2

is

M02

plasma,
secondary

circuit

leg series
equivalent

circuit

L

R

ip

transform

Le

Figure 3. Electrical circuit of the current ip in the leg (primary
circuit: self-inductance L0, resistance R0) inductively coupled with
the plasma current is (secondary circuit: self-inductance L2, plasma
resistance R2, plasma self-inductance Le), via their mutual
inductance M02. The secondary circuit can be transformed into a
series equivalent circuit (total self-inductance L, total resistance R)
in terms of the primary circuit current. The notation of [14] is used.

R2ω/ν)2 + R2
2] is a transformation factor. Hence the analysis

of the antenna network properties can be carried out using the
circuit of figure 1, on the understanding that the value of Z2 =
R + jωL depends on whether there is plasma or not. Note that
inductive coupling to the plasma increases the leg resistance
by aR2, and decreases the leg inductance by (aL2 + aR2/ν).
The stringer impedances Z1 are also transformed by plasma
coupling although the effect is relatively small because the
stringers are short compared with the legs.

It is interesting to note that the particular case of a linear
conductor coupled with a conducting, dissipative medium can
also be analyzed by the complex-image method [22–24] which
gives a self-consistent calculation of the line impedance in
terms of the medium conductivity. There is then no need to
assume a perfectly conducting plane at an arbitrary position.
However, comparison between the transformer method above
and the complex-image method goes beyond the scope of
this work.

Estimation of the plasma parameters using the antenna
input impedance measurements of figure 2 is considered
further in section 5.1. First of all, however, in the following
sections it is necessary to calculate the relation between the
antenna input impedance and the impedances of the legs and
stringers which make up the network [7].

3. Normal modes in ladder networks

In figure 4, In, Mn and Kn are currents while An and Bn

denote the potentials at the antenna nodes. Ladder networks
are conventionally analysed using a loop current description
[5], where the loop current Jn in each section is given by
Jn = Mn = −Kn, and In = Jn −Jn−1. However, to treat the
general case of a dissipative-driven antenna in section 4, we
will have to introduce into the circuit analysis the input current
irf driven by the antenna RF power supply. This injection of
RF current means that Mn = −Kn does not hold everywhere
on the antenna, and so the loop current description cannot
be used for the dissipative-driven antenna. For consistent
notation throughout this work, we will therefore use Kn and
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Figure 4. A ladder network segment with N legs made up of stringer impedances Z1 and leg impedances Z2.

Mn instead of loop currents Jn. A derivation of the normal
mode frequencies and current distributions [5] is now briefly
reviewed to introduce the notation and to give a reference point
for comparison of the general solution for dissipative antennas
in section 4.

3.1. General solution for the leg currents, In

For the currents and impedances defined in the nth elementary
mesh of figure 4, the general set of equations for the circuit
analysis is given by Kirchhoff’s and Ohm’s laws for the
currents and voltages,

Mn = Mn−1 + In, (1)

Kn = Kn−1 − In, (2)

Z2In + Z1Mn − Z2In+1 − Z1Kn = 0. (3)

A recurrence relation for the leg currents In is obtained by
subtracting the voltage equation for the (n − 1)th mesh and
eliminating Mn and Kn using (1) and (2):

In+1 − 2

(
1 +

Z1

Z2

)
In + In−1 = 0. (4)

The conventional solution is In = a1Γn
1 + a2Γn

2, where Γ1 and
Γ2 are the roots of the quadratic characteristic equation which
can be arranged as

Γ + 1/Γ
2

=
(

1 +
Z1

Z2

)
. (5)

Recognizing that these roots are reciprocal, we write Γ1 = e−γ

and Γ2 = eγ , whereupon the characteristic equation becomes

cosh γ =
(

1 +
Z1

Z2

)
, (6)

and the general solution for the antenna leg currents is therefore

In = a1e−γn + a2eγn, (7)

where a1 and a2 are complex constants to be determined
from boundary conditions. The solution given by (6) and
(7) holds for any impedances Z1 and Z2, and is therefore
valid for dissipative antennas also. For harmonic currents

with ejωt time dependence, the leg currents are Inejωt so
that the general solution is seen to consist of a forward
traveling wave a1 exp(jωt − γn) and a backward traveling
wave a2 exp(jωt + γn), where γ = α + jβ is the propagation
constant, α is the attenuation constant per section and β is the
phase change per section (α and β are both real).

3.2. Normal modes for a non-dissipative planar antenna

For a non-dissipative ladder network, the impedances Z1 =
1/(jωC) + jωM and Z2 = jωL are purely imaginary and
their ratio in (6) is purely real. The propagation constant then
corresponds to γ = jβ in (6):

cos β = 1 +
M

L
− 1

ω2LC
. (8)

For this special case of a lossless antenna, there is no
injection of RF current to consider and so Mn = −Kn. Using
(1)–(3) gives the same recurrence relation as for In, hence
Mn = −Kn = b1e−jβn + b2ejβn. Recognizing that M0 = 0
from figure 4, we have b1 = −b2, and the currents Mn in the
non-dissipative ladder network are therefore proportional to
sin(nβ). The finite length condition MN = 0 further implies
that Nβ = mπ . When combined with (8), this leads to the
existence of normal mode frequencies [5]

ωm = 1√
C

(
M + 2L sin2

(
mπ

2N

)) ,

(m = 1, 2, . . . , N − 1), (9)

and imposes the spatial distribution for Mn:

Mn ∝ sin
(
n
mπ

N

)
, (m = 1, 2, . . . , N − 1), (10)

where the phase shift per section β = mπ
N

is proportional to the
mode number m. The normal mode current in each leg, using
(10) in (1), is given by [5]

In ∝ sin
(mπ

2N

)
cos

[(
n − 1

2

)
mπ

N

]
,

(m = 1, 2, . . . , N − 1). (11)

To summarize, a N -leg lossless planar antenna presents
(N − 1) normal modes [5] whose current amplitudes have
sinusoidal spatial distributions and which oscillate in phase.
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Figure 5. Equivalent circuit of a Helyssen-driven planar antenna showing the three parts I, II, and III. The driving current irf from the RF
power supply is fed into the antenna via node n = Nf with the return path via node Ng. The boundaries between the three parts are defined
by the nodes Ng and Nf , where Ng < Nf in this work.

4. Dissipative networks: Helyssen plasma sources

A real antenna dissipates power due to the electrical resistance
of its components. Furthermore, when used as a plasma
source, power injected into the antenna is partially transferred
to the plasma by coupling to the dissipative medium. The
question then arises as to whether the resonance properties
of non-dissipative antennas are preserved in the presence
of such a coupling to efficiently maintain a well-controlled
plasma source. In the following, the resistances R and r are
responsible for the power dissipation, and the impedances are
now Z1 = r + 1/(jωC) + jωM and Z2 = R + jωL. For
an antenna used as an inductively coupled plasma source, a
realistic value for R would not be more than a few ohms (an
estimate of R < 122 m� is derived in section 5.1).

We define a Helyssen planar resonant antenna as a driven,
dissipative ladder network with arbitrary feed-point positions
for the RF power connections, as shown in figure 5. This work
considers the following points for antenna design:

(i) The values of the antenna input impedance and the antenna
components L, R, C, M, r;

(ii) Optimum design of the connection configuration and the
choice of mode;

(iii) Estimation of the current and mode perturbations due to
the injected rf driving current, and the effect of plasma on
the antenna impedance and its component values.

4.1. Current distribution in a dissipative antenna with arbitrary
connection configuration

Because of current injection irf from the RF power supply
(figure 5), a single solution for the whole antenna can no longer
be found. Instead, separate solutions have to be determined
for each part of the antenna, with respect to the boundary
conditions at the nodes of current injection.

The total net current along the line is iline = Mn +Kn. By
adding (1) and (2), iline = Mn + Kn = Mn−1 + Kn−1 which
is constant along a line segment if not interrupted by current

injection nodes. For current continuity, referring to figure 5,
iline = 0 in parts I and III, and iline = −irf in part II of the
line which carries the RF current circulating via the RF power
supply.

For antenna impedance calculations, it will also be
necessary to consider the RF voltages An and Bn at the antenna
nodes in figure 5. The voltages across the antenna impedances,
by Ohm’s law, are

An − An+1 = Z1Mn, (12)

Bn − Bn+1 = Z1Kn, (13)

Bn − An = Z2In. (14)

The sum of (12) and (13) is (An + Bn) − (An+1 + Bn+1) =
Z1(Mn + Kn) from which the sum of voltages at the nth node
can be written as

An + Bn = V0 − nZ1iline, (15)

where V0 is a different constant for each part. Using (14) and
(15), the node voltages in terms of the dissipative antenna leg
currents In are

An = [V0 − nZ1iline − Z2In] /2, (16)

Bn = [V0 − nZ1iline + Z2In] /2, (17)

where iline = 0 for parts I and III, and iline = −irf in part II as
above. The stringer currents are then found using (12) and (13):

Mn =
[
iline +

Z2

Z1
(In+1 − In)

]
/2, (18)

Kn =
[
iline − Z2

Z1
(In+1 − In)

]
/2, (19)

where it can be seen that, in part II of the antenna, the
circulating RF current iline = −irf is shared equally between
the two stringers of the antenna.

The solution for the currents in the dissipative antenna is
shown in appendix A, and figure 6 shows the calculated current
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Figure 6. Driven RF currents in a dissipative antenna calculated for RF connection points Nf = 12 and (a) Ng = 8, or (b) Ng = 4. Left: leg
currents In, where the RF connection positions are marked by circles. Right: stringer currents, full line Mn, dashed line Kn. Representative
experimental antenna component values: N = 23 legs, L = 143 nH, R = 36 m�, C = 2.6 nF, M = 7.9 nH, r = 2 m�. Mode m = 6, at
time exp(jωt) = exp(jπ/4) for RF current |irf | = 1 A.

distribution in the legs and stringers of a dissipative antenna
corresponding to an experimental arrangement [2, 3]. Two
cases are shown: (a) for feed-points (Ng, Nf) = (8, 12) where
the antenna resonant currents are much larger than irf ; and (b)

for feed-points (Ng, Nf) = (4, 12) where irf is comparable to
the antenna currents. The arrows in (b) mark the differences
in the Mn currents at nodes Ng and Nf which arise to respect
current continuity with the RF current injection. From the point
of view of current uniformity, it is clearly necessary to arrange
for the RF input current to be as small as possible compared
with the antenna currents.

At resonance, in the limit of weak dissipation, α → 0, the
current distributions (A.1)–(A.3) in all three parts tend towards
the same limit (see section B.1 in the appendix):(

In

irf

)
α→0

�
(

j

αN

)
· sin

(mπ

2N

)
cos

[(
n − 1

2

)
mπ

N

]

·


 D

cos
(mπ

2N

)

 , (20)

D = cos

[(
Ng − 1

2

)
mπ

N

]
− cos

[(
Nf − 1

2

)
mπ

N

]
. (21)

The first bracket of (20) shows that the RF driving current irf is
in phase quadrature (j = eiπ/2) with respect to the leg currents
In. The inverse dependence on α means that the driving
current becomes negligible compared with the leg currents,
|irf | � |In|, in the limit of a lossless antenna, i.e. a non-zero

resonant current persists as the driving current tends to zero.
The (sin, cos) product in (20) shows that the normal mode
current distribution (11) is recovered for a weakly dissipative
antenna. Also, the amplitude of the spatial distribution of leg
currents becomes uniform along all three parts of the antenna
in the normal mode limit α → 0 because the driving current
irf becomes negligible compared with In. The factor D in (20)
accounts for the choices of mode number m and of RF current
injection connections (Ng, Nf). When the injection points
coincide with a maximum and a minimum in the leg currents,
as for (Ng, Nf) = (8, 12) in figure 6(a), the RF excitation is
efficiently coupled to the antenna resonant current distribution,
then |In/irf | � 1, and |D| = 1.99 is close to its maximum
of 2. Conversely, when the RF connections positions do not
correspond to the normal mode spatial variation of the leg
currents, as for (Ng, Nf) = (4, 12) in figure 6(b), the driven
currents In are not large compared with the RF current, and
|D| = 0.037 is close to zero. The importance of D for the
antenna input impedance is described in section 4.3.

4.2. Input impedance of a dissipative antenna

The input impedance of a Helyssen antenna determines the
required level of driven RF current for a given power injection,
and determines the parameters necessary for matching the
antenna to the power source output impedance. In figure 5, the
RF voltage, Vrf , across the input nodes is given by ANf −ANg .
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Figure 7. Real input impedance as a function of mode number for
the same antenna component values as in figure 6. RF connections
(Ng, Nf) = (8, 12). Lines using the exact expression (23); points
using the approximation (27).

From (16),

Vrf = [
Z1(Nf − Ng)irf − Z2(INf − INg)

]
/2. (22)

The exact expression for the antenna input impedance Zin =
Vrf/irf follows directly using (A.2) to give

Zin = Z1

2
(Nf − Ng) + Z2F(γ,N)G, (23)

where F(γ,N) is given by (A.4), and G(γ,Ng,Nf ,N) is a form factor
which accounts for the influence of the general configuration
of the RF connection positions:

G = (cosh γ(N − 2Nf + 1) + cosh γ(N − 2Ng + 1))/2

+ cosh γN − cosh γ(N − Ng − Nf + 1)

− cosh γ(N + Ng − Nf). (24)

The first term of the impedance expression (23) is the parallel
combination of the two rows of (Nf − Ng) impedances Z1

between the RF driving current connections. The second term,
proportional to Z2, is periodic in mode number (and frequency)
and is responsible for the series of peaks in the real input
impedance shown in figure 7. The input impedance Zin in
(23) is exact for any values of component impedances Z1, Z2,
hence for any level of dissipation, and for the continuous range
of frequencies.

The characteristic equation (6) for the dissipative antenna,
using Z1 = r + 1/(jωC) + jωM and Z2 = R + jωL, is now

cosh γ �
[

1 +
M

L
− 1

ω2LC

]
− j

[
R′

ω3L2C

]
, (25)

R′ � R

[
1 − ω2MC

(
1 − r

R

L

M

)]
, (26)

where R′ is the combined effective resistance of R and r ,
and small resistances are assumed. By expanding cosh γ =
(cosh α)(cos β) + j(sinh α)(sin β) and equating real parts, we
again find (8), to first order in the small quantity α, since

then cosh α � 1 (see section B.1 in the appendix). Hence
the impedance peaks of the weakly dissipative antenna are at
almost the same frequencies as the normal mode frequencies
(9). The values of R and r therefore do not alter the resonance
frequencies to first order in α, which is a useful property for
the case of purely resistive loading due to plasma dissipation,
because a fixed RF driving frequency can be used.

In the limit of weak dissipation, the real and imaginary
parts of the antenna input impedance at the resonance of mode
m can be approximated by (see section B.1 in the appendix):

�(Zres
in ) � ω2

mL2

R′ (1 − w2
mMC)

D2

2N
, (27)

�(Zres
in ) � (Nf − Ng)

2

[
ωmM − 1

ωmC

]
, (28)

where 0 � D2 � 4, using (21). In figure 7, (27) gives a good
approximation to the real part of the exact expression (23) at
resonance for values above 1 �.

4.3. Optimization of the input impedance by choices of mode
number and RF connection positions

The antenna input impedance is influenced by the mode
number m and the RF connection positions (Ng, Nf). A high
input impedance is necessary to minimize the RF injection
current for a given power so that the antenna current sinusoidal
distribution is as uniform as possible along the antenna.

The scaling of the antenna real input impedance is given
by (27). For maximizing the real impedance, there is a general
trend for high mode frequency ωm (low mode number) and
low leg resistance R, which is strongly modulated by the
connection configuration term, D2, from (21).

Figure 8 represents a mapping of the antenna real input
impedance �(Zin) in the (Ng, Nf) plane for mode m = 6.
This is a graphical demonstration of the impedance modulation
which is approximately proportional to D2. Once the number
of legs N and the mode number m are chosen, the value of D2

depends only on the antenna connection positions (Ng, Nf).
For each mode, the connection positions can be chosen to
obtain a value close to the maximum, D2 � 4. For example,
in figure 8, D2 = 3.96 for (Ng, Nf) = (8, 12) for which
the real input impedance is close to the maximum 302 �, but
D2 = 0.0014 for (Ng, Nf) = (4, 12) for which the real input
impedance is only 0.13 �.

The choice of (Ng, Nf) is therefore a design parameter for
the real input impedance of the driven antenna. To minimize
the reactive component of the antenna input impedance at
resonance, the connections should be as close together as
possible (respecting D2 ≈ 4) to give the lowest value of
(Nf − Ng) according to (28).

Finally, for all the resonant modes, the peak values of
real input impedance are approximately inversely proportional
to the effective resistance R′, as shown by (27) and figure 9.
When the antenna sustains a plasma, the dissipation due to the
plasma load will increase the value of the antenna resistances,
and consequently reduce the antenna input impedance. This
is important in terms of RF power injection because it
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Figure 8. Contour plot of the real part of the antenna input
impedance, �(Zin), using (23) for continuum ranges of Ng and Nf .
The relevant values of real input impedance correspond to integer
values of (Ng, Nf). The contours are from 301 � (the innermost
circles) down to 1 � in 50 � intervals. Mode m = 6, and the same
antenna component values as for figure 6.

means that the conditions for impedance matching between
a load and a RF generator with 50 � output impedances can
already be almost fulfilled. In contrast, conventional large-
area RF plasma sources, capacitively or inductively coupled,
present almost purely imaginary input impedances which tend
towards zero or very high values, respectively, with increasing
source area.

4.4. Antenna input current for constant power injection

We now consider the RF current in a dissipative planar antenna
for a given RF power input Prf . An approximate scaling law
for the driving RF current amplitude îrf = |irf | is obtained from
Prf = �(Zres

in )(îrf)
2/2 and (27) so that

îrf � 2

ωmL|D|

√
PrfNR′

(1 − w2
mMC)

. (29)

The RF current for a given power is minimized for optimum
connection configurations having the maximum value |D| = 2.

As an example, figure 10 shows the dependence of îrf

on the leg resistance R for different positions Ng of the RF
return connection, with Nf = 12. According to figure 8, the
antenna input impedance is maximized by choosing Ng = 8.
Therefore, at fixed input power, the input current is lower for
Ng = 8 than for all other ground connections in figure 10.

4.5. Perturbations to the normal mode phase distribution due
to the RF driving current

The properties of normal modes, such as a uniform sinusoidal
distribution of the leg currents along the antenna, and phase
equality of all the oscillating leg currents, are ideal for using
the antenna as a uniform plasma source. However, the injection
of the RF driving current irf is also a perturbation to the normal
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Figure 9. The real input impedance at resonance as a function of the
effective resistance R′, for modes m = 2, 5, 6, 8. Lines using the
exact expression (23); points using the approximation (27).
Connection positions (Ng, Nf) = (8, 12); antenna component values
as for figure 6.
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Figure 10. Amplitude of the input current îrf at 100 W RF power, as
a function of leg resistance, for ground connections Ng = 3, 6, 8 and
10, with Nf = 12 and mode m = 6. Lines using the exact
expression (23); points using the approximation (27). Antenna
component values as for figure 6.

mode phase distribution because of its non-zero amplitude and
its phase quadrature (see (20)) relative to the antenna currents.
Figure 11 shows the leg currents as a function of time, In(t),
and their phase φn relative to the RF current, using (A.1) to
(A.3), where In = În exp(jφn).

Figure 11(a) corresponds to a quasi-non-dissipative
antenna (R = 36 m�) with optimum connection positions
(Ng, Nf) = (8, 12) excited at its m = 6 resonance frequency
with RF current îrf = 1 A. The leg currents are temporally in
phase and their amplitude follows the sinusoidal distribution
expected according to the normal mode expressions (11).

Figure 11(b) shows the perturbation to the current phase
equality for higher leg resistance R = 1 �: The more resistive
the antenna legs, the lower the input impedance (see (27)),

8
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Figure 11. Left: currents in all the antenna legs, and the RF current, as a function of time for one RF period at 13.56 MHz. Right: their
phases referenced to the RF feed-point driving current at 90◦, for îrf = 1 A. (a) Optimum connections (Ng, Nf) = (8, 12) and low leg
resistance R = 36 m�; (b) optimum connections but high leg resistance, R = 1 �; (c) low leg resistance (R = 36 m�) but non-optimum
connections (Ng, Nf) = (4, 12). The phases for the RF driving current are labelled by irf . Mode m = 6, with antenna component values as
for figure 6 unless otherwise stated.

and the lower the leg currents with respect to the RF current.
The equivalent circuit approach in section 5 will be used to
estimate the increase in the effective leg resistance due to
plasma loading.

Figure 11(c) shows the effect of the connection
configuration D on the phase equality of the antenna currents
by changing the ground connection position to Ng = 4. The
current phase equality is strongly perturbed even though the
leg resistance has the same low value as for figure 11(a).
The perturbed distribution is due to the low input impedance
associated with the Ng = 4 feeding configuration.

Since dissipative coupling to the plasma increases the
value of R, it is all the more important that the connection
configuration be chosen so that D2 � 4 to obtain the maximum

value of the real input impedance. In terms of plasma
generation, situations (b) and (c) would cause non-uniformities
in heating and electron density. To maintain the amplitude
uniformity and phase equality of normal modes, it is therefore
necessary that the leg current amplitude be as large as possible
compared with the RF current, which is obtained for high input
impedance.

5. Parallel resonance approximation for the input
impedance near to a resonance frequency

In the neighborhood of a resonance frequency, each peak in
figure 7 has a form similar to the parallel resonance behavior
measured experimentally [2] with and without plasma, as

9
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Figure 12. An equivalent circuit, in the neighborhood of a mode
resonance, for the dissipative antenna shown in figure 5 with the
components of figure 1. Using (30) to (35), this circuit accounts for
all the antenna components L, R, C, M, r , the mode number m, and
general RF connection positions (Ng, Nf).

shown in figure 2. A model of the antenna impedance is useful
to understand how the individual antenna components are
related to the equivalent parallel resonance circuit parameters
which can be conveniently measured. The effect of plasma
loading on the antenna can then be deduced from the equivalent
circuit parameters.

To interpret the antenna impedance behavior close to
resonance, we consider an approximation for Zin by expansion
of (23) in terms of a small deviation dω from a resonance
frequency ωm (see section B.2 in the appendix). It is found
that the input impedance (23) of the dissipative antenna in the
neighborhood of themth mode resonance can be represented by
an impedance Z1(Nf−Ng)/2 in series with a parallel resonance
equivalent circuit, as shown in figure 12. The equivalent circuit
parameters are as follows:

Z
eq
in � Z1

2
(Nf − Ng) +

1

Yeq
, (30)

Yeq = 1

ReqQ2

[
1 + j2Q

dω

ωm

]
, (31)

Req = R′(1 − ω2
mMC)

D2

2N
, (32)

Leq = L(1 − ω2
mMC)

D2

2N
, (33)

Q = ωmLeq/Req = ωmL/R′, (34)

Ceq = C [1 − cos (mπ/N)]

(1 − ω2
mMC)2

2N

D2
. (35)

The values of Req, Leq, Ceq can be uniquely determined for
each mode number m by measuring the antenna impedance in
the neighborhood of the mth resonance. The angular frequency
at resonance, ωm = 1/

√
LeqCeq, is the same expression as

for the normal mode resonance in (9). Also, the real input

impedance at resonance of the equivalent circuit, ReqQ
2,

is identical to the previous expression (27). The quality
factor Q of the equivalent circuit represents the Q factor of
the whole antenna system [5]: it is given in terms of the
antenna individual components L, R, C, M, r and the mode
number m using (34) and (26). Once the series impedance
Z1(Nf −Ng)/2 is accounted for, Q is in fact independent of the
RF connection positions. The equivalent circuit approximation
is indistinguishable from the exact impedance (23) for the
conditions in figure 2.

5.1. The measured effect of plasma excitation on the antenna
impedance

Figures 2(a) and (b) show the antenna impedance measured
around mode m = 6 without plasma, and with plasma,
respectively [2]. The fitted parameters (Ceq, Leq, Req) are
(13.13 nF, 10.55 nH, 2.65 m�) without plasma, and (15.09 nF,
9.166 nH, 6.68 m�) with plasma. The impedance of the
resonant antenna can easily be measured with sufficient
accuracy using voltage and current probes, in contrast to the
highly reactive impedance of capacitive or inductive reactors
where a small error in the phase difference between voltage
and current near ±90◦ results in large errors. The antenna
input impedance at resonance decreases strongly from 302 to
90 � when the plasma is excited. In contrast, the 13.525 MHz
antenna resonance frequency increases by only about 7 kHz
in the presence of plasma: for this experimental situation,
it is found that the measured relative changes in Leq and
Ceq are such that their product, and thus ωm = 1/

√
LeqCeq,

remains almost the same when the plasma is excited. As a
first step to understanding the coupling between antenna and
plasma [14, 16, 25], the effect of the plasma on the antenna
component values L, R, C, M, r will now be calculated from
the parallel resonance measurements Ceq, Leq, Req using the
antenna equivalent circuit model above.

For analysis in terms of the antenna components, C is
taken to be a constant equal to the capacitor’s nominal value,
C = 2.6 nF, since the plasma sheath capacitive coupling is not
expected to be more than a few pF. The capacitances C built
into the resonant antenna are, in fact, much larger than the small
parasitic capacitances found in conventional coil antennas used
for inductively coupled plasma sources. For N = 23 legs and
RF connections (Ng, Nf) = (8, 12), the value of D2 = 3.96
is close to optimum. Using (30)–(35) it is now possible to
calculate the antenna component values:

(i) Without plasma, at resonance frequency 13.525 MHz, the
calculated inductances M = 7.9 nH, from (35), and L =
143 nH, from (33), are in reasonable agreement with the
experimental component estimations [2], 6 nH and 156 nH
respectively. The calculated range of the leg resistance
is 36 < R < 42 m�, using (26) and (32), depending
on whether the resistances r, R are in proportion to
their associated inductances M, L, respectively (so that
r
R

L
M

= 1, whereupon r = 2 m�), or negligibly small
(r = 0). These were used as the example parameters
throughout this work, as given in the caption of figure 6(a).

10
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(ii) With plasma, at resonance frequency 13.532 MHz, the
calculated inductances are now M = 10.7 nH and L =
134 nH. The calculated range of the leg resistance is
97 < R < 122 m�, again depending on how r is
estimated. The strong increase in resistance R due to
plasma loading (see figure 3 and accompanying text) is
not so large as to perturb the phase equality of the leg
currents. The leg inductance L has diminished by 9 nH,
whereas the small inductance M is estimated to increase
by almost 3 nH. The error is estimated to be not more than
1 nH for both inductances. On the basis of this model, the
increase in M in (35) accounts for the measured increase
in Ceq which is responsible for the almost-unchanged
resonance frequency when the plasma is excited. The
decrease in L could be interpreted as the consequence of
inductive coupling between the antenna and the plasma
[14, 16, 25] as discussed in section 2. However, the
apparent increase in M cannot be understood on this basis
since plasma inductive coupling would be expected to
decrease the inductance of all conducting elements. In
fact, the observed frequency shift is not only determined
by inductive coupling to the plasma but also by the
partial screening by the plasma of the mutual inductances
between the legs [7]. The estimations of changes in
resistance and inductance remain valid, but an analysis
of plasma parameters based on section 2 and antenna
input impedance measurements would require knowledge
of the inductance change due to transformer coupling,
separately from the mutual impedance effect. However,
the consideration of mutual inductances is beyond the
scope of this paper. The real input impedances with
and without plasma, calculated at resonance using (27)
or ReqQ

2, are consistent with the measured values.

To summarize, the dominant effect of plasma excitation on the
antenna is to triple the effective resistance of its legs. This is
due to antenna coupling with the dissipative plasma. For this
example, the measured resonance frequency remains almost
the same when the plasma is excited, due to changes in the
antenna inductances on the basis of this model. For use as
an industrial plasma source [4], this is convenient because
a fixed frequency RF power generator can be used, and the
dominantly real input impedance near to antenna resonance
avoids strong reactive currents and voltages in the RF power
feeding which presents problems for conventional large-area
plasma sources. However, it remains difficult to understand
the details of antenna inductive coupling to the plasma with
this first modeling approach: for this, other mode frequencies
will have to be investigated, including an analysis of the mutual
inductances between the antenna elements [5].

6. Conclusions

A theoretical analysis of Helyssen resonant antennas is
presented to aid antenna design for its development as a plasma
source for industrial applications. Analytical expressions
are given for the leg currents and the input impedance for
arbitrary antenna impedances, and for any level of dissipation.
Approximations are given for the case of a weakly dissipative

high-pass antenna to provide simple scaling laws. The antenna
can be represented by a simple equivalent circuit which
includes a parallel resonance circuit as shown by experiments
with and without plasma. Measurements of the equivalent
circuit during plasma excitation were interpreted in terms
of the antenna component values. Inductive coupling to
the dissipative plasma tripled the leg effective resistance,
whereas the resonant frequency was almost unchanged in
this case: the change in resonant frequency depends on both
plasma inductive coupling and on plasma screening of mutual
inductances, which is more difficult to interpret than the
increase in effective resistance due to power dissipation in the
plasma.

To design a planar antenna for an inductively coupled
plasma source, it was shown that a high input impedance is
necessary to maintain the current amplitude uniformity and
phase equality which are the desirable properties of normal
modes. This can be achieved by optimal choice of RF
connection positions for a given mode number in a weakly
dissipative antenna. The dominantly real input impedance near
to antenna resonance avoids the problem of strong reactive
currents and voltages in the matching box and RF power
connections found in conventional large-area plasma sources.
Further improvements to the model will require consideration
of mutual inductances.
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Appendix A. The currents in the three parts of the
antenna

The solution for the currents in the dissipative antenna is
obtained by finding the constants a1 and a2 for the currents
In in (7) for each part of the antenna. These six constants
are found using the boundary conditions at both ends (as in
section 3.2) and with respect to current continuity between
the different parts at nodes n = Ng and n = Nf . After
some algebra, the leg currents for the general configuration of
figure 5 are

I I
n = irfF(γ,N) [cosh g1 + cosh g2a − cosh g3 − cosh g4a] ,

(A.1)

I II
n = irfF(γ,N) [cosh g1 + cosh g2b − cosh g3 − cosh g4a] ,

(A.2)

I III
n = irfF(γ,N) [cosh g1 + cosh g2b − cosh g3 − cosh g4b] ,

(A.3)

F(γ,N) = tanh(γ/2)

2 sinh(γN)
, (A.4)

where the arguments of the cosh functions

(i) g1 = γ(n − 1 + Ng − N),
(ii) g2a = γ(n − Ng + N),

(iii) g2b = γ(n − Ng − N),
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(iv) g3 = γ(n − 1 + Nf − N),
(v) g4a = γ(n − Nf + N),

(vi) g4b = γ(n − Nf − N),

represent the influence of the chosen RF connection positions
(Ng, Nf). From (A.1)–(A.3) it can be seen that the current
flow in each element of a dissipative antenna is proportional to
the driving current irf , varies non-linearly with γ (via F ), and
depends on the RF connection positions. The importance of
these three factors for the antenna input impedance, the antenna
currents, and their phases is discussed in sections 4.2–4.4.

Appendix B. Approximations by expansion in the
small term α

B.1. Approximations at resonance

The factor F(γ,N), defined in (A.4), is used for the leg cur-
rents (A.1)–(A.3) and the input impedance (23). For the
limit of small attenuation per section, α � 1, the numera-
tor tanh(γ /2) � tanh(jβ/2) = j tan(β/2). In the denom-
inator, sinh(γN) can be expanded as sinh(αN) cos(βN) +
j cosh(αN) sin(βN) and since sin(βN) = sin(mπ) = 0 for
normal modes, we have sinh(γN) � αN(−1)m for αN � 1.
One expression for F(γ,N) at resonance is therefore

F res
(γ,N) �

j tan

(
mπ

2N

)
2(−1)mαN

. (B.1)

Expansion of the sums of four cosh terms in (A.1)–(A.3) in the
limit of small α gives 2(−1)m cos[(n − 1

2 )mπ
N

]D for all three
of the sums. Taking the product with (B.1) gives the normal
mode approximation for the current distribution in (20).

F res
(γ,N) can also be expressed in terms of L, R, C, M, r by

expanding the characteristic equation as in (25). Equating real
parts gives cos β � [1+ M

L
− 1

ω2
mLC

] at resonance, and equating
imaginary parts gives

α sin β � − R′

ω3L2C
, (B.2)

for α � 1 so that cosh α ≈ 1. For the example parameters
in the caption of figure 6(a), α = 0.0015 and cosh α = 1, to
6 decimal places. Using tan β

2 ≡ (1 − cos β)/ sin β in (B.1)
gives the alternative expression

F res
(γ,N) � −jωmL(1 − w2

mMC)

2(−1)mNR′ , (B.3)

at resonance. In the expression for the input impedance (23),
expansion of the cosh terms in G for small α gives (−1)mD2.
In the limit of weak dissipation, Z2 � jωL and hence the input
impedance (23) at resonance can be approximated by (27) for
the real part and (28) for the imaginary part.

B.2. Approximations near to resonance

Normal modes excited in a lossless antenna present a discrete
frequency spectrum whereas driven currents in a dissipative
antenna exhibit a continuous spectrum, with peaks of real

impedance at the normal mode resonance frequencies to first
order in α (see (25)). For a dissipative antenna, therefore,
the mode frequency has continuous values and we consider
a small variation in angular frequency dω about ωm, so that
ω = ωm + dω. This corresponds to a mode variation dm

about mode number m (where dm � 1). Whereas sin(βN) =
sin(mπ) = 0 for normal modes, we now have sin(βN) =
sin[(m + dm)π ] = cos(mπ) sin(π dm) � (−1)mπ dm in the
proximity of mode m. Expansion of sinh(γN) now gives

sinh(γN) � (αN + jπ dm)(−1)m (B.4)

in the immediate neighborhood of the mth resonance, for
αN � 1. We now consider

1

F
eq
(γ,N)

= 2 sinh(γN)

tanh(γ/2)

� 2(−1)m[(α sin β)N + j(sin β)π dm]

j(1 − cos β)
, (B.5)

where sin β = −(2N/πω3
mLC)(dω/dm) is obtained by

differentiating cos β � [1 + (M/L) − (1/ω2
mLC)] with

respect to m. Substituting into (B.5) and using (B.2)
gives an approximation for the input impedance (23) in the
neighborhood of the mth mode resonance:

Z
eq
in � Z1

2
(Nf − Ng) +

(1 − w2
mMC)D2

2NYpar
, (B.6)

where Ypar is the admittance of a parallel resonance circuit
having C in parallel with the series combination of L and R′:

Ypar � 1

R′Q2

[
1 + j2Q

dω

ωm

]
, (B.7)

and Q = ωmL/R′ is the quality factor of the antenna at the
resonance frequency of the mth mode. Expressions (30)–(35)
follow directly.
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